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1 Introduction

Consider the data which arise from a large scale longitudinal survey to study the durations

of spells of unemployment of workers. Exits from unemployment to employment periods are

marked and define observed periods of unemployment. Exits from unemployment into states

other than employment generate censored values. In this paper we use as an example the

German Socio-Economic Panel Survey, where 2214 unemployment durations are observed,

of which 55 % are censored. In addition to the unemployment durations, several covariates

are observed: gender, marital status, place of residence, age, education and others. The

usual approach for the analysis of such data is to express the durations (or log-durations)

as a linear model in the covariates and possibly their interactions.

As we discuss below, censored regression quantile methods are especially appropriate

when the relationship between outcome and covariates (that is, the parameters or the

coefficients of linear regression terms) may be expected to vary with the size of the response,

i.e. the conditional quantile, or, more generally because of population heterogeneity. For

example, the effect of nationality or gender may be quite different for people with short

unemployment durations than for those with longer unemployment spells.

However, even at a fixed quantile, it seems highly unlikely that the effect of age would

be strictly linear (even if the data is transformed, say by logarithms). Thus, it is highly

desirable to be able to allow the effect of age (and its interaction terms) to be modeled by

somewhat nonlinear functions. In this paper, we provide an approach to analysis of such

data.

We consider a regression quantile estimator for right censored survival data. Let (X, Y )

be a random vector with X ∈ R
p and Y a real-valued variable. X could have discrete or

continuous components, with at least one continuous component whose relationship with Y

is nonlinear. For τ ∈ (0, 1) the regression quantile QY |X (τ ;x) of Y given X = x satisfies

P (Y ≤ QY |X (τ ;x)|X = x) = τ.

Assuming that n independent pairs (Yi,X i) are observed, and that the relationship between
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Y and X is linear, i.e.

QYi(τ |xi) = x
⊺
i β(τ), (1)

the τth regression quantile coefficient, β̂(τ), and hence the regression quantile Q̂Y |X (τ ;x),

can be obtained as the solution of

min
b∈Rp

n
∑

i=1

ρτ (yi − x
⊺
i b)

where ρτ (u) = u(τ − I(u < 0)) (see Koenker (2005) for details). With survival times it is

often the case that Y is not observed, and that instead one observes only the minimum of Y

and a censoring variable C. Suppose that n independent triples {(Xi, Zi,∆i), i = 1, . . . , n}

are observed, with Zi = min(Yi, Ci) and ∆i = I(Yi ≤ Ci). We are interested in estimating

QY |X (τ ;x) when Y and C are conditionally independent given X, and when Y varies

linearly with most components of X but nonlinearly with at least one component of X.

Under the linear models paradigm a quantile regression approach is especially useful in

survival analysis, as it interprets the covariate effect on survival times with flexibility not

always achievable under the global assumptions like those of the Cox model. Koenker and

Geling (2001) introduced a quantile regression approach to survival analysis by means of

a transformation of the survival times. For instance, when the log-transformation is used,

quantile regression corresponds to the accelerated failure time model, in which log Yi =

x
⊺
i β + ui and the hazard rate is given by

hi(y|x) = h0(y exp(−x
⊺
i β)) exp(−x

⊺
i β).

Moreover, if the ui are i.i.d. with extreme value distribution F (u) = 1 − exp(− exp(u)),

this corresponds to the Cox proportional hazards model with Weibull baseline hazard, and

the linear quantile regression model for the log-survival times agrees with the Cox model

for accelerated failure time. Otherwise the Cox model specifies a parametric model for the

survival distribution, while quantile regression permits rather general heterogeneity (subject

to the use of linear models). The proportional hazards model is the most popular method
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for analyzing right-censored survival data, but in recent years there have been advances in

quantile regression methods that offer an alternative to the Cox approach.

The earliest proposed estimator for censored quantile regression assumed fixed censor-

ing (Powell (1986)). Subsequent research either assumed fixed censoring or independence

between Y and C, e.g. Buchinksy and Buchinsky and Hahn (1998), Honore et al (2002),

and Chernozhukov and Hong (2002).

The independence assumption was relaxed in Portnoy (2003), where conditional inde-

pendence of Y and C given x is assumed, and a “reweighting-to-the-right” (Efron (1967))

scheme is employed to compute the conditional quantiles. The Portnoy (2003) method is

of particular interest, as it essentially extends the Kaplan-Meier estimator to the regression

setting. A similar generalization of the Nelson-Aalen estimator was also recently proposed

by Peng and Huang (2008). The models developed in the rest of this paper are based on

the Portnoy estimator.

The Portnoy CRQ model assumes conditional independence between Yi and Ci given

xi. The approach is based on a recursive pivoting algorithm for random censoring, whose

solution reduces to the Kaplan-Meier estimator in the one-sample case. The algorithm

iteratively computes the entire conditional quantile function for τ ∈ (0, 1), stopping at

a value of τ for which all observations remaining above the current conditional quantile

function are censored. Note that this differs from the usual quantile regression methods

that compute the conditional quantile at a fixed τ . If, for instance, the median is required,

the pivoting algorithm of Portnoy (2003) will compute all quantiles up to the 50th in order

to obtain the median.

In what follows, we present a modification of the pivoting algorithm with a generalization

permitting nonlinear response to one (or more) covariates (as a “partially linear” model).

Section 2 presents a grid algorithm as a computationally effective method for fitting such

models based on generally available regression quantile programs. Section 3 examines the

asymptotic properties of the partially linear CRQ estimator. Simulation experiments are
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statistically analyzed in Section 4 to evaluate the performance of the approach. A study of

unemployment duration data is presented in Section 5 to show the value of the use of the

partially linear censored regression model.

2 Grid algorithm for linear CRQ

A slightly modified version of the Portnoy (2003) CRQ pivoting algorithm, evaluating the

linear regression quantiles of (1) on a grid of τ values is presented here. This algorithm

iteratively computes the conditional quantiles from lowest to highest. Suppose that at the

starting value t1 of τ ∈ (0, 1) there are no censored observations below the t1th quantile, so

that the quantile coefficient β̂(t1) is estimated using the usual quantile regression algorithm

minimizing
∑n

i=1 ρt1(yi − x
⊺
i b) with respect to b. The corresponding quantile hyperplane

x
⊺
i β̂(t1) will then have proportion t1 of the data below it and (1 − t1) above. We say that

observations for which Yi ≤ x
⊺
i β̂(t1) are crossed by the t1th quantile. As the value of τ

increases, censored observations may also get crossed. When the ith censored observation

is crossed, the algorithm splits it to two parts according to a weighting scheme: a part

that is observed at Ci and a part at infinity. If the ith censored point Ci is crossed for the

first time at τ = τi, it will receive weight ŵi(τ) = (τ − τi)/(1 − τi) for all τ > τi. This

weight is updated every time τ increases. With weights for all crossed censored observations

computed, weighted quantile regression is performed to obtain the regression coefficients at

the current value of τ . More details on the weights of crossed observations and on the

weighted quantile regression performed are given below.

Algorithm

1. Choose gridpoints t1, . . . , tM covering the set ε ≤ τ ≤ 1−ε. Starting with the gridpoint

t1 compute the initial quantile function β̂(t1) for 1 ≤ τ ≤ t1 using the uncensored

quantile regression algorithm. This assumes that the initial regression quantile, β̂(t1)

determines a hyperplane that lies below all censored points, which is reasonable, since

censored observations below all data are non-informative and can be deleted without
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changing the estimation.

2. Suppose that the quantiles β̂(tl), 1 ≤ l ≤ k have been computed by minimizing over

b ∈ R
p the objective function

n
∑

i=1

{

∆iρtk+1
(Yi − x

⊺
i b)

+ (1 − ∆i)
[

ŵi(tk+1,β)ρtk+1
(Ci − x

⊺
i b)

+ (1 − ŵi(tk+1,β))ρtk+1
(Y ∗ − x

⊺
i b)
]

}

where Y ∗ is a sufficiently large value so that Y ∗ > x
⊺
i b for all x

⊺
i b from the data. Y ∗

will be referred to as “point at infinity”.

3. In the step from tk to tk+1 some censored observations that were not previously crossed

might get crossed. For those observations Ci > x⊺
i β̂(tk) and Ci ≤ x⊺

i β̂(tk+1). They

are then given weights ŵi(τ) = (τ − τi)/(1 − τi) with τi(β̂) = tk with the rest of the

weight going to the point at infinity, Y ∗. In addition, updated weights are computed

for the already crossed observations according to the same formula. With all the

weights defined, a usual weighted quantile regression is performed.

4. The algorithm stops either at the last grid point, tM , or at some point te when only

non-reweighted censored observations remain above the current solution, x
⊺
i β̂(te).

The main advantage of using the grid modification of the pivoting algorithm is computa-

tional. For large sample sizes the pivoting algorithm computes solutions at a high number of

τ -values. With the grid algorithm the number of τ -values at which the solution is obtained

can be reduced, with substantial savings in computational time required for the iterative

process. The grid algorithm is outlined above for a linear CRQ model, for which asymptotic

results are given in Vanden Branden (2005) and Neocleous et al (2006). In what follows the

algorithm is applied within the framework of partially linear models.
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3 The partially linear estimator and its large sample prop-

erties

The partially linear CRQ model combines semiparametric estimation for censored data

with quantile regression techniques, and uses B-splines for the estimation of the nonlinear

term. Consider first the uncensored fully nonlinear model yi = gτ (xi) + ei, where the ei

are independent random errors with τth quantile equal to zero. Following the notation in

Schumaker (1981), let

π(s) = (B1(s), B2(s), . . . , Bkn
′+d+1(s))

⊺

be the set of B-spline basis functions with given knots ∆ = {xi}
kn

′

0 with number of spline

knots kn
′ and order of splines d + 1. Then the estimated τth quantile function ĝnτ (s) =

π(s)⊺θ̂n, where θ̂ ∈ R
kn

′+d+1, is a solution of

min
θ∈Rkn′+d+1

∑

i

ρ(yi − π(xi)
⊺θ).

Once the spline knots are selected and the spline bases computed, the problem is reduced

to a linear quantile regression with (kn
′+d+1) parameters. It was shown, e.g. in He and Shi

(1994, 1996) that if gτ is smooth with bounded rth derivative, and kn
′ is of order n1/(2r+1),

under some mild conditions the spline estimate ĝnτ (s) converges to gτ (s) at the optimal

nonparametric rate of Op(n
−2r/(2r+1)). In what follows we discuss the use of a B-spline

estimator in a censored regression quantile setting.

Assuming the data xi = (x1i,x2i), i = 1, . . . , n, come from a model with

QYi(τ |xi) = x
⊺
1iθ1(τ) + gτ (x2i), (2)

the estimated quantiles will be of the form

Q̂Yi(τ |xi) = x
⊺
1iθ̂1(τ) + π(x2i)

⊺θ̂2(τ), (3)

where gτ is approximated by a linear combination of B-splines.

Let β = (θ⊺
1 ,θ

⊺
2)⊺. Without loss of generality, we assume that the support of g(s) is

s ∈ [0, 1]. Let π(s) = (π1(s), π2(s), . . . , πk′

n+d+1(s))
⊺ be the B-spline basis of order d with
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k
′

n knots. Let kn = k
′

n + d + 1 and define Ri(τ) = π(x2i)
⊺θ2(τ) − gτ (x2i). Then at the kth

step of the CRQ grid algorithm

the estimated tk+1th quantile is x
⊺
1iθ̂1(tk+1) + π(x2i)

⊺θ̂2(tk+1). This linearity in β

allows current theoretical approaches to be generalized to the case of β of increasing

dimension (at the same rate as kn). For a grid of M τ -values the CRQ estimator is

β̂ = (β̂(t1)
⊺, β̂(t2)

⊺, . . . , β̂(tM )⊺)⊺ ∈ R
Mp and the following result holds.

Theorem 3.1 Let β̂ ∈ R
Mp, be the censored regression quantile estimator for the model

specified in (1) on a grid ε 6 t1 < t2 < . . . < tM 6 1 − ε. Let β∗ be the true unknown

censored regression quantile along the same grid, tk+1−tk ≡ gn = n−κ and p = O(nγ) where

γ and κ satisfy one of (4), (5) and (6):

0 < κ < 1/6, 0 < γ < κ (4)

1/6 < κ < 1/4, 0 < γ < 1/4 (5)

1/4 < κ < 1/3, 0 < γ < (1 − 3κ)/2. (6)

Under Assumptions (I), (F), (X) and (XX) given in the Appendix,

‖β̂ − β∗‖2 = Op(n
κ+γ−1).

For the partially linear CRQ model with B-spline estimation of the nonlinear part, the

following corollary holds.

Corollary 3.2 Let β̂ = (θ̂⊺
1 , θ̂⊺

2 )⊺ ∈ R
Mp be the censored regression quantile grid estimator

of β∗ = (θ∗⊺1 , θ∗⊺2 ), where π(x2)
⊺θ∗2 estimates g(x2) in the model specified in (2). Under the

assumptions and notation of Theorem 3.1, with the added condition

(G) gτ (s) has bounded rth derivative for r ≥ 3 for all τ ,

‖θ̂1 − θ∗1‖
2 = Op(n

κ+γ−1).
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Corollary 3.2 can be proved by combining B-spline approximation rates and Theorem 3.1.

This result is most useful in applications where the effect of interest, e.g. treatment effect,

is to be estimated in the presence of some additional nonlinear covariate.

4 Simulation study

To examine the finite sample performance of the partially linear CRQ estimator, we con-

ducted a simulation experiment in which the censored response is linear in one covariate

and non-linear in another covariate. Event times were generated for i = 1, . . . , n from the

model

Yi = β0 + β1x1i +
10e1i

1 + exp(6 − 0.5x2i)

and censoring times from the model (Configuration 1)

Ci = β0 + β1x1i +
10e2i

1 + exp(5 − 0.5x2i)

for roughly 20% censoring, or (Configuration 2)

Ci = β0 + β1x1i +
10e2i

1 + exp(4 − x2i)
− 0.2x2

1

for roughly 40% censoring. Parameter values were β0 = 1 and β1 = 3, and the x1i were

generated as iid U(0, 5), the x2i as iid U(0, 25), and e1i and e2i as iid N(1, 0.01). The

scatterplot in Figure 1 shows the censoring mechanism for Configuration 1 and sample

size n = 500. Four different models were fitted to the data: one with linear term in x2

and three with spline terms of order 2, 3 and 4 (piecewise linear, quadratic and cubic) in

x2. Knots at the quartiles of x2 were used in the spline models for Configuration 1, while

for Configuration 2 two additional sets of knots were considered. In each case bootstrap

confidence intervals were computed with b = 500 bootstrap replications.

Tables 1 and 2 report average bias, median absolute error, root mean square error,

empirical coverage probability (95% nominal coverage) and mean confidence interval length

for the slope of x1 evaluated at τ = 0.50 and 0.75 (similar results were obtained for τ = 0.25)

for Configuration 1. In all cases the partially linear model outperforms its linear equivalent.
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The difference between the three spline orders used is less clear, with some evidence that

the quadratic spline works best. This is also supported by Figure 2, in which the quadratic

spline term appears to give the best fit for the nonlinear term.

The effect of knot selection and placement is further investigated in the simulation study

of Configuration 2, in which fitted spline models have knots at (a) the 33rd and 66th quantile

of x2, (b) the quartiles of x2, and (c) the 20th, 40th, 60th and 80th quantiles of x2. Tables

3 and 4 show the performance of various models fitted for Configuration 2. It can be seen

that again the spline models perform better than the linear model, while three knots are in

general better than just two. The difference between three and four knots is less clear, as it

appears that three knots are better for quadratic spline models, and four knots are better

for piecewise linear and cubic spline models.

Finally, Table 5 reports bias, root mean square error and median absolute error for the

estimation of the nonlinear term in Configuration 2. The quadratic spline with three knots

appears to be performing better than other spline models in terms of root mean square

error. Differences in bias are less obvious.

5 Application to unemployment duration

We illustrate the usefulness of the partially linear CRQ model with an application to admin-

istrative unemployment data from the German Socio-Economic Panel Survey, a longitudinal

survey of private households in Germany covering topics such as income, employment, ed-

ucation and health. We focus on a subset of the data covering the period 1992-2004. The

response variable of interest, Y , is the duration in months of the latest unemployment spell

in the respondent’s work history.

We restrict our attention to males with German nationality (as both nationality and

gender were found to be significant in preliminary analyses) and we explore the effect of

age and marital status on unemployment duration. Exits from unemployment to full- or

part-time employment were considered observed while all other exits were considered as

censored observations. Excluding observations with missing data, this gave a sample size
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of 2214 records with 55% censoring. Of these 2214 individuals, 42% were married. The

median age for married respondents was 47.42 and for single 26.17.

The CRQ model

Qlog(Yi)(τ | x) = β0(τ) + β1(τ) × married + θ(τ)⊤π(age) (7)

was considered and quantiles up to the 60th were estimated. In particular, a quadratic spline

term with knots at the quartiles of age was fitted. This provides a smooth 5-parameter fit

to the age effect. All but one of the five coefficients were significant (at some τ -values), and

so it is clear that the age effect requires more than a linear term.

Plots of β̂(τ), the estimated quantile coefficients for the intercept and marital status,

against τ are shown in Figure 3. The coefficients tend to be smaller in absolute value for

short term unemployment and larger for long term unemployment.

Marriage has a strong negative effect on unemployment duration, independent of age

(the relevant interaction terms were not significant). The estimated median coefficient

representing the difference in log-duration between a single and a married German male is

-0.8244 (confidence interval of (-1.1649,-0.4838)), i.e. median unemployment duration for a

married respondent is 0.4385 times that of a single respondent of the same age. The size of

the marriage effect is similar in all but the lowest quantiles of unemployment duration.

Plots of the estimated median unemployment duration against age are shown in Figure

4 separately for single and married German males. Pointwise bootstrap confidence intervals

are also shown. The age ranges plotted reflect the different age distributions for married and

single groups. For married males over 50, censoring exceeds 80%, thus we restrict attention

for the married group to the “reliable estimation” age range (31.42,50.00) corresponding to

the 10th age percentile and the age with 81% censoring above it. For single males the age

range plotted is (19.67,47.17) corresponding to the 10th and 90th age percentiles. In the

singles age distribution, 80% of the observations over age 47.17 are censored.

From Figure 4, it is clear that the age effect on unemployment duration is quite nonlinear

(at least for single men), with age being beneficial at very low ages (< 25) and rather
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detrimental (for both single and married men) at higher ages (as might be expected). The

quantile analysis in Figure 5 presents perhaps a more surprising result. For quantiles below

τ = .3 (shorter unemployment durations), the effect is rather independent of age. This

is not unexpected, as those who are readily re-employable do well at any age. However,

for higher quantiles, the detrimental effect of age seems to increase rapidly for men in the

range 30 - 50 years. The rather substantial increase in difficulty to obtain employment for

older men who are not so readily re-employable would seem to call for some explanation

(economic, psychological, or sociological).

Plots such as those in Figures 3-5 are useful in identifying departures from linearity. We

advocate exploring the nonlinearity of each continuous covariate before attempting to fit

linear coefficients as a way to detect patterns and improve the overall fit of the model. In

addition, fitting a CRQ model can highlight differences in the covariate effects for long and

short-term durations, something that is not picked up by the proportional hazards model.

6 Concluding remarks

In the preceding sections we proposed the use of a partially linear model for censored

regression quantiles as a useful extension to the standard linear regression techniques for

survival data. The partially linear model was shown to be consistent and its use was

illustrated by a data example and simulations. Quartile knots were used for the B-spline

estimation of nonlinear terms and the quadratic spline gave satisfactory quantile estimates

in the empirical example and simulations. Higher order spline terms did not show much

improvement in estimation.

The censored regression quantile estimator is robust and flexible enough to highlight

aspects of the data that the most common survival analysis techniques might overlook.

Incorporating a nonlinear part adds even more flexibility to the model, allowing for more

accurate estimation of parameters of interest, like quantile treatment effects. Censored

regression quantiles and the semiparametric model proposed here are tools for capturing

subtle aspects of the data and can be used in conjunction with other techniques for more
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comprehensive exploration of censored data.

As in every semiparametric model, the use of B-splines raises the question of knot

selection. In this work the spline knots were chosen at fixed quantiles of the nonlinear

variable. As long as the knot selection is not data-driven (e.g. equally spaced knots or

quantile knots, perhaps depending on the sample size n), the asymptotic theory of B-

splines applies directly (and consistency follows by Theorem 3.1 if the number of knots

increases with n appropriately). Asymptotic results are not currently available if knot

selection is data-driven. In practice fixing knots at specified quantiles of the x-variable is

a simple and convenient solution for small to medium-sized datasets, and it is not likely

that data-driven methods can offer much improvement here. However, in general it is also

desirable to have a method for optimal knot selection and placement depending on the data.

Such methods have been proposed by a number of authors. For instance, Koenker et al

(1994) use a roughness penalty for quantile smoothing splines, and Doksum and Koo (2000)

propose a method for stepwise knot addition and deletion using modified AIC and BIC for

nonparametric quantile regression with regression splines. Further work along such lines

would be useful for larger data sets.

Acknowledgments

This research was partially supported by National Science Foundation Grant DMS06-04229

and by the European Commission under the 6th Framework Programme’s Research In-

frastructures Action (Trans-national Access contract RITA 026040) hosted by IRISS-C/I

at CEPS/INSTEAD, Differdange (Luxembourg). The data used in this publication were

made available to us by the German Socio-Economic Panel Study (SOEP) at the German

Institute for Economic Research (DIW), Berlin.

References

Buchinsky M, Hahn JY (1998) An alternative estimator for the censored quantile regression

model. Econometrica 66:653–671

13



Chernozhukov V, Hong H (2002) Three-step censored quantile regression and extramarital

affairs. J Amer Statist Assoc 97:872–882

Doksum K, Koo J (2000) On spline estimators and prediction intervals in nonparametric

regression. Computational Statistics and Data Analysis 35:67–82

Efron B (1967) The two-sample problem with censored data. vol 4, pp 831–853, proceedings

of the Fifth Berkeley Symposium

He X, Shao Q (2000) On parameters of increasing dimensions. J Multivariate Anal 73:120–

135

He X, Shi P (1994) Convergence rate of B-spline estimators of nonparametric conditional

quantile functions. Nonparametric Statistics 3:299–308

He X, Shi P (1996) Bivariate tensor-product B-splines in a partly linear model. J Multi-

variate Anal 58:162–181

Honore B, Khan S, Powell JL (2002) Quantile regression under random censoring. J Econo-

metrics 109:67–105

Koenker R (2005) Quantile Regression. Cambridge University Press

Koenker R, Geling O (2001) Reappraising medfly longevity: a quantile regression survival

analysis. J Amer Statist Assoc 96:458–468

Koenker R, Ng P, Portnoy S (1994) Quantile smoothing splines. Biometrika 81:673–680

Neocleous T, Vanden Branden K, Portnoy S (2006) Correction to:“Censored Regression

Quantiles”. J Amer Statist Assoc 101:860–861

Peng L, Huang Y (2008) Survival analysis with quantile regression models. Journal of the

American Statistical Association (103):637–649

Portnoy S (2003) Censored regression quantiles. J Amer Statist Assoc 98:1001–1012

14



Powell JL (1986) Censored regression quantiles. J Econometrics 32:143–155

Vanden Branden K (2005) Robust methods for high-dimensional data, and a theoretical

study of depth-related estimators. PhD thesis, Katholieke Universiteit Leuven

Appendix: Proof of Theorem 3.1

The conditions for the main result (Theorem 3.1) are as follows:

(I) Y and C are conditionally independent given x

(F) For 0 < ε < 1, there exist constants aj , bj , cj with aj > 0 and bj < ∞ for j = 1, 2, 3

such that
a1 ≤ fYi(y) ≤ b1 |f ′

Yi
(y)| ≤ c1

a2 ≤ f̃Yi(u) ≤ b2 |f̃ ′
Yi

(u)| ≤ c2

a3 ≤ f̃Ci(v) ≤ b3 |f̃ ′
Ci

(v)| ≤ c3

uniformly for ε ≤ FYi(y) ≤ 1 − ε, ε ≤ F̃Yi(u) ≤ 1 − ε and ε ≤ F̃Ci(v) ≤ 1 − ε and

uniformly in i = 1, . . . , n.

(X) max1≤i≤n ||xi|| = O(p).

(XX) The matrix 1
n

∑n
i=1 xix

⊺
i is positive definite.

Theorem 3.1 makes use of the theory of He and Shao (2000) on the asymptotics of

M-estimators when the parameter dimension increases with n. Briefly, this is outlined as

follows. Let β̂n ∈ R
m be the M-estimator for minimizing

∑n
i=1 ζ(zi,β) for some data set

{z1,z2, . . . ,zn} with zi ∈ R
p+1 for i = 1, 2, . . . , n; and for some objective kernel ζ(zi,β).

If the objective function is convex in β, and if ζ(z,β) is differentiable with respect to β,

except at finitely many points, with derivative Ψ(z,β), then Theorem 2.1 of He and Shao

(2000) states that under certain conditions, ‖β̂n−β∗‖2 = Op(m/n) where β∗ is the solution

to
∑n

i=1 EβΨ(zi,β) = 0. For the CRQ grid estimator the increasing dimension is m = Mp,

where M is the number of grid points. Let p = O(nγ) for some γ > 0. Equivalently, p ≤ cnγ

for some constant c. Define Ψk(xi,β) = xi{∆i(I(Yi < x
⊺
i β(tk)) + (1−∆i)(wi(β, tk)I(Ci <
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x
⊺
i β(tk)) − tk)},

ηi(θ,β) = Ψ(xi,β) − Ψ(xi,β) − E(Ψ(xi, θ) − Ψ(xi,β))

and Sm = {α ∈ R
m : ‖α‖ = 1}. Then

Ψ(xi,β) = (Ψ1(xi,β)⊺,Ψ2(xi,β)⊺, . . . ,ΨM (xi,β)⊺)⊺ ∈ R
m.

The result also relies on the following two lemmas, which have been shown in the case

of fixed p by Vanden Branden (2005). Here the result is extended to the case of p growing

with n. Lemma 1 permits restricting the proof to monotone functions x⊺β(τ) on the grid.

Lemma 2 shows that τi(β) and τi(β
∗) are close on the set of slopes β considered.

Lemma 1 For every B > 0, ∃ n0 such that for n > n0 the set

{

β ∈ R
m : ‖β − β∗‖ 6 B

(m

n

)1/2
}

is contained in the set of all monotonic functions on the grid ε 6 t1 < t2 < . . . 6 tM 6 1−ε

for some ε > 0. Here tk − tk−1 = gn = n−κ, p ≤ cnγ for some c > 0, and m 6 p/gn, with

γ ≤ 1
2 − 3κ

2 , κ > 0.

Lemma 2 Let τi(β) be the gridpoint at which β crosses Ci, and let τi(β
∗) be the unknown

gridpoint at which the true regression quantile β∗ crosses the same observation. It then

holds that

|τi(β) − τi(β
∗)| = O(T (n,m))

on the set {β : ‖β − β∗‖ 6 B(m/n)1/2} with

T (n,m) = max(Bc1/2p1/2(m/n)1/2, 2gn) = max(Bcnκ+γ−1/2, 2n−κ).

Proofs of Lemmas 1 and 2 are straightforward generalizations of those in Vanden Bran-

den (2005).

Proof of Theorem 3.1. It is sufficient to verify the following conditions of He and Shao

(2000).
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(C0) ‖
∑n

i=1 Ψ(xi, β̂n)‖ = op(n
1/2).

(C1) There exists a C and r ∈ (0, 2] such that

max
i6n

Eβ sup
θ:‖θ−β‖6d

‖ηi(θ,β)‖2
6 nCdr

for 0 < d 6 1.

(C2) ‖
∑n

i=1 Ψ(xi,β
∗)‖ = Op(nm)1/2 or

∑n
i=1 E‖Ψ(xi,β

∗)‖2 = O(nm).

(C3) There exists a sequence of (m×m) matrices Dn with lim infn→∞ λmin(Dn) > 0 (where

λmin denotes the minimum eigenvalue) such that for any B > 0 and uniformly in

α ∈ Sm

sup
‖β−β

∗

‖6B(m
n

)1/2

|α⊺

n
∑

i=1

Eβ
∗(Ψ(xi,β) − Ψ(xi,β

∗)) − nα⊺Dn(β − β∗)| = o(n1/2).

(C4) There exists a sequence A(n,m) = o(n/ log n) for which

sup
β:‖β−β

∗

‖6B(m
n

)1/2

n
∑

i=1

Eβ|α⊺ηi(β,β∗)|2 = O(A(n,m))

for any α ∈ Sm, and B > 0.

(C5) supα∈Sm
supβ:‖β−β

∗

‖6B(m
n

)1/2

∑n
i=1(α

⊺ηi(β,β∗))2 = Op(A(n,m)) for any B > 0.

(C0) follows from the gradient conditions by noting that

||Ψ(β̂)||2 = OP (M max
1≤k≤M

||Ψk(β̂(tk))||
2)

and

||Ψk(β̂)|| = OP (
√

p log n max ||xi||).

Thus

||Ψ(β̂)|| = OP (p
√

M log n) = OP (nκ/2+γ(log n)1/2).

This is op(n
1/2), provided that κ/2 + γ < 1/2.

For (C1), we note that had the xi been bounded by a constant, then Eβ ||ηi,k(θ,β)||2

would have been bounded by a constant also. Since max ||xi||
2 = O(p), then Eβ ||ηi,k(θ,β)||2 =
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O(p) and Eβ ||ηi(θ,β)||2 = O(Mp), where Mp ≤ cnκ+γ . Therefore one can take n large

enough such that C > κ + γ is satisfied with 0 < d ≤ 1. For (C2), we note that

E ||Ψk(β
∗)||2 = O(max ||xi||

2) and

n
∑

i=1

M
∑

k=1

E ||Ψk(β
∗)||2 = O(Mnp) = O(mn).

(C3) and (C4) are the hardest conditions to prove. As shown in Vanden Branden (2005),

for α ∈ Sm,

α⊺E [Ψ(β) − Ψ(β∗)] = nα⊺Dn(β − β∗) (8)

+
n
∑

i=1

M
∑

k=1

α
⊺
kxi

{

f̃ ′
Yi

(u)(x⊺
i (β(tk) − β∗(tk)))

2
}

(9)

+

n
∑

i=1

M
∑

k=1

α
⊺
kxi

{

k
∑

l=1

dklf̃
′
Ci

(v)(x⊺
i (β(tl) − β∗(tl)))

2

}

(10)

where

dkl =







−w1 l = 1
wk−1 l = k

−(wl − wl−1) otherwise

dkli =

{

dkkf̃Ci(x
⊺
i β

∗(tk)) + f̃Yi(x
⊺
i β∗(tk)) l = k

dklf̃Ci(x
⊺
i β

∗(tl)) otherwise

and

nDn =

































n
∑

i=1
d11ixix

⊺
i 0p,p . . . . . . . . . . . . 0p,p

n
∑

i=1
d21ixix

⊺
i

n
∑

i=1
d22ixix

⊺
i . . . . . . . . . . . . 0p,p

· · · · · · · · · · · · · · · · · · · · ·
n
∑

i=1
dk1ixix

⊺
i

n
∑

i=1
dk2ixix

⊺
i . . .

n
∑

i=1
dkkixix

⊺
i 0p,p . . . 0p,p

· · · · · · · · · · · · · · · · · · · · ·
n
∑

i=1
dM1ixix

⊺
i

n
∑

i=1
dM2ixix

⊺
i . . . . . . . . . . . .

n
∑

i=1
dMMixix

⊺
i

































.

(11)

Thus for (C3) to hold we require

|

n
∑

i=1

M
∑

k=1

α
⊺
kxi

{

f̃ ′
Yi

(u)(x⊺
i (β(tk) − β∗(tk)))

2 +

k
∑

l=1

dklf̃
′
Ci

(v)(x⊺
i (β(tl) − β∗(tl)))

2

}

|

= o(n1/2) (12)
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or, as noted in Remark 2.3 of He and Shao (2000),

|

n
∑

i=1

M
∑

k=1

α
⊺
kxi

{

f̃ ′
Yi

(u)(x⊺
i (β(tk) − β∗(tk)))

2 +

k
∑

l=1

dklf̃
′
Ci

(v)(x⊺
i (β(tl) − β∗(tl)))

2

}

|

= o((mn)1/2). (13)

For( 9) we have

n
∑

i=1

M
∑

k=1

α
⊺
kxif̃

′
Yi

(u)(x⊺
i (β(tk) − β∗(tk)))

2

≤

n
∑

i=1

M
∑

k=1

∣

∣α
⊺
kxi

∣

∣

M
∑

k=1

(x⊺
i (β(tk) − β∗(tk)))

2

≤

n
∑

i=1

||xi||

(

M
∑

k=1

||αi||
2

)1/2

||xi||
2

M
∑

k=1

||β(tk) − β∗(tk)||
2

= O(
m

n

n
∑

i=1

||xi||
3) = O(p3/2m) = O(n5γ/2+κ)

and for (10)

n
∑

i=1

M
∑

k=1

α
⊺
kxi

k
∑

l=1

dklf̃
′
Ci

(v)(x⊺
i (β(tl) − β∗(tl)))

2

≤

n
∑

i=1

M
∑

k=1

α
⊺
kxidk1f̃

′
Ci

(v)(x⊺
i (β(tl) − β∗(tl)))

2 (14)

+
n
∑

i=1

M
∑

k=1

α
⊺
kxi

k
∑

l=2

dklf̃
′
Ci

(v)(x⊺
i (β(tl) − β∗(tl)))

2 (15)

Noting that dkl = O(1) for l = 1 and O(M) otherwise, we obtain

(14) ≤

n
∑

i=1

(

M
∑

k=1

∣

∣

∣

∣α
⊺
kxi

∣

∣

∣

∣

2

)1/2( M
∑

k=1

d2
k1

)1/2

||xi||
2 ||β(t1) − β∗(t1)||

2

≤

n
∑

i=1

||xi||
3 M1/2 ||β(t1) − β∗(t1)||

2 = O(p3/2M1/2 m

n
)

= O(n5γ/2+3κ/2)
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and

(15) ≤
n
∑

i=1

M
∑

k=1

α
⊺
kxi

(

k
∑

l=2

d2
kl

)1/2 k
∑

l=2

(x⊺
i (β(tl) − β∗(tl)))

2

≤

n
∑

i=1

M
∑

k=1

α
⊺
kxi

(

k − 1

M2

)1/2

||xi||
2

k
∑

l=2

(β(tl) − β∗(tl))
2

= O(M1/2 m

n

n
∑

i=1

||xi||
3) = O(p3/2M1/2 m

n
)

= O(n5γ/2+3κ/2).

With γ and κ satisfying 2γ + κ < 1/2, the error from (C3) can be made o((mn)1/2) =

o(nγ/2+κ/2+1/2).

(C4) needs to hold with A(n,m) = o(n/ log n). The term α⊺ηi(β,β∗) is defined as

α⊺ηi(β,β∗) =
M
∑

k=1

α
⊺
k(Ψk(xi,β) − Ψk(xi,β

∗) − E(Ψk(xi,β) − Ψk(xi,β
∗))). (16)

A Taylor series expansion for the expectation part of the expression gives

M
∑

k=1

α
⊺
kxi

[

f̃Yi(u)(x⊺
i (β(tk) − β∗(tk))) +

k
∑

l=1

dklf̃Ci(v)(x⊺
i (β(tl) − β∗(tl)))

]

for some u and v. Similarly as for (C3) the first part of this term is bounded by O((m/n)1/2p) =

O(nκ/2+3γ/2−1/2) and the second part is bounded by O(p(Mm/n)1/2) = O(n3γ/2+κ/2−1/2).

Therefore

α⊺ηi(β,β∗) =
M
∑

k=1

α
⊺
k(Ψk(xi,β) − Ψk(xi,β

∗)) + O(n3γ/2+κ/2−1/2).

This error term squared and multiplied by n is O(n3γ+κ) which can be made o(n/ log n) if

3γ+κ < 1 so that it satisfies the requirement for (C4). For the term in
∑M

k=1 α
⊺
k(Ψk(xi,β)−

Ψk(xi,β
∗)) we introduce an indicator, Iak ,bk

(Y ), with Iak ,bk
(Y ) = ±1 if Y lies in between

x
⊺
i a(tk) and x

⊺
i b(tk), and 0 otherwise. Then

M
∑

k=1

α
⊺
k(Ψki(β) − Ψki(β

∗)) =

M
∑

k=1

α
⊺
kxi sign

(

(
)

x
⊺
i (β(tk) − β∗(tk))×

[I(Yi 6 Ci)Iβk,β
∗

k
(Yi) + I(Yi > Ci)w(β∗, tk)Iβk,β

∗

k
(Ci)]

+

M
∑

k=1

α
⊺
kxiI(Yi > Ci)I(Ci 6 x

⊺
i β(tk))(wi(β, tk) − wi(β

∗, tk)).
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The last term can be bounded using Lemma 2. For some constant D

|wi(β, tk) − wi(β
∗, tk)| =

∣

∣

∣

∣

(tk − 1)(τi(β) − τi(β
∗))

(1 − τi(β))(1 − τi(β
∗))

∣

∣

∣

∣

6 DT (n,m)

where T (n,m) is as defined in Lemma 2. Therefore the last term can be bounded by

O(M1/2p1/2T (n,m)) = max
(

O(M1/2p(m/n)1/2),O(p1/2/M1/2)
)

= max(O(n3γ/2+κ−1/2),O(nγ/2−κ/2)).

Combining these results gives

|α⊺ηi(β,β∗)| 6

M
∑

k=1

{|α⊺
kxi|[|I(Yi 6 Ci)Iβk,β

∗

k
(Yi)| + |I(Yi > Ci)Iβk,β

∗

k
(Ci)|}]

+ max
(

O(n3γ/2+κ−1/2),O(nγ/2−κ/2)
)

.

This error term squared and multiplied by n will be o(n/ log n) if 3γ+2κ < 1 and γ−κ < 0.

Finally for the term

(

M
∑

k=1

{|α⊺
kxi|[|I(Yi 6 Ci)Iβk,β

∗

k
(Yi)| + |I(Yi > Ci)Iβk,β

∗

k
(Ci)|}]

)2

,

a bound is required on the number of observations for which Iβk,β
∗

k
(Yi) and Iβl,β

∗

l
(Yi) with

l 6= k are both non-zero. By Lemma 2, this number is bounded by D∗T (n,m)M for some

constant D∗. A bound of O(p(m/n)1/2) = O(n3γ/2+κ/2−1/2) is thus obtained for the main

part of the square. The cross term contributes

O(p(m/n)1/2T (n,m)M) = max
(

O(n5γ/2+5κ/2−1),O(n3γ/2+κ/2−1/2)
)

.

The contribution of both terms can once again be made o(n/ log n) if 5γ/2 + 5κ/2 < 1 and

3γ/2 + κ/2 < 1/2.

The constraints on κ and γ yield equations (4), (5) and (6).

All that is left is to verify that (C5) holds for these values.

According to Lemma 2.2 of He and Shao (2000), (C5) holds with the same A(n,m)

as in (C4), provided that c2
n,mm log n = O(A(n,m)), where cn,m is a sequence satisfying
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supβ,x ‖Ψ(x,β)‖ 6 cn,m. Here cn,m = D∗∗M1/2p1/2 for some constant D∗∗. Recalling that

p = O(nγ), it follows that c2
n,mm log n = O(A(n,m)), which concludes the proof of Theorem

3.1.

Remark. The results obtained in Theorem 3.1 are not optimal. For example, one

possible choice for γ and κ is γ = 1/7 and κ = 1/5 which would give a rate of order n−23/35.

In addition, if condition (C4) holds with A(n,m) = o( n
m log n), Theorem 2.2 of He and Shao

(2000) gives asymptotic normality of the estimator, but requires tighter bounds than those

obtained in Vanden Branden (2005), Neocleous et al (2006) and in Theorem 3.1. That is

not to say that asymptotic normality is not possible. In fact, empirical results show that as

the sample size n increases, the distribution of the CRQ-estimated β̂ appears to approach

a normal distribution.
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Table 1: Comparison of performance for β1(0.50) in the simulation model with approximate
20% censoring (Configuration 1). Knots at the quartiles of x2 were used for the spline terms.

τ = 0.50 Bias MAE RMSE ECP EML

n=200

lin −0.00188 0.07646 0.11086 0.940 0.45406
pcs −0.00012 0.00413 0.01115 0.996 0.04806

quad 0.00033 0.00436 0.00997 0.980 0.03552
cub 0.00024 0.00831 0.01420 0.968 0.05564

n=500

lin 0.00262 0.05208 0.07554 0.936 0.28953
pcs 0.00003 0.00216 0.00419 0.990 0.01669

quad −0.00019 0.00228 0.00452 0.950 0.01692
cub −0.00003 0.00573 0.00843 0.960 0.03405

n=1000

lin −0.00198 0.03420 0.04850 0.952 0.20286
pcs 0.00001 0.00124 0.00228 0.982 0.00934

quad −0.00011 0.00158 0.00291 0.950 0.01088
cub −0.00005 0.00420 0.00609 0.954 0.02488

Table 2: Comparison of performance for β1(0.75) in the simulation model with approximate
20% censoring (Configuration 1). Knots at the quartiles of x2 were used for the spline terms.

τ = 0.75 Bias MAE RMSE ECP EML

n=200

lin −0.00167 0.06349 0.10313 0.928 0.40821
pcs 0.00081 0.00784 0.01576 0.969 0.05667

quad −0.00004 0.00332 0.00787 0.994 0.03060
cub 0.00033 0.00637 0.01171 0.969 0.05071

n=500

lin 0.00349 0.04290 0.06439 0.940 0.25481
pcs −0.00001 0.00436 0.00771 0.949 0.02945

quad −0.00014 0.00169 0.00352 0.978 0.01349
cub −0.00028 0.00411 0.00707 0.966 0.02916

n=1000

lin −0.00432 0.03272 0.04355 0.954 0.17951
pcs −0.00017 0.00353 0.00508 0.946 0.02003

quad −0.00005 0.00124 0.00209 0.964 0.00815
cub −0.00002 0.00302 0.00480 0.968 0.01980
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Table 3: Comparison of performance for β1(0.50) in the simulation model with n = 500 and
approximate 40% censoring (Configuration 2). Knots at (a) the 33th and 66th quantiles,
(b) the quartiles and (c) the 20th, 40th, 60th and 80th quantiles of x2 were used for the
spline terms.

τ = 0.50 Bias MAE RMSE ECP EML

Linear term in x2

−0.1074 0.1069 0.1256 0.6640 0.2835

Piecewise linear spline

(a) −0.0166 0.0173 0.0233 0.7980 0.0645
(b) 0.0108 0.0109 0.0212 0.9457 0.0641
(c) 0.0056 0.0081 0.0144 0.9618 0.0526

Quadratic spline

(a) 0.0276 0.0288 0.0348 0.7560 0.0917
(b) 0.0010 0.0032 0.0055 0.9739 0.0219
(c) 0.0030 0.0047 0.0081 0.9379 0.0279

Cubic spline

(a) 0.0018 0.0038 0.0060 0.9700 0.0242
(b) 0.0061 0.0080 0.0110 0.9280 0.0379
(c) 0.0008 0.0026 0.0040 0.9699 0.0172

Table 4: Comparison of performance for β1(0.75) in the simulation model with n = 500 and
approximate 40% censoring (Configuration 2). Knots at (a) the 33th and 66th quantiles,
(b) the quartiles and (c) the 20th, 40th, 60th and 80th quantiles of x2 were used for the
spline terms.

τ = 0.75 Bias MAE RMSE ECP EML

Linear term in x2

−0.2084 0.2116 0.2239 0.3260 0.3246

Piecewise linear spline

(a) −0.0247 0.0253 0.0330 0.7818 0.0918
(b) −0.0033 0.0091 0.0135 0.9277 0.0491
(c) 0.0023 0.0052 0.0093 0.9351 0.0361

Quadratic spline

(a) 0.0111 0.0104 0.0159 0.8741 0.0500
(b) 0.0011 0.0033 0.0050 0.9834 0.0210
(c) 0.0021 0.0048 0.0077 0.9436 0.0289

Cubic spline

(a) 0.0013 0.0040 0.0063 0.9529 0.0246
(b) 0.0035 0.0052 0.0081 0.9306 0.0306
(c) 0.0011 0.0029 0.0044 0.9741 0.0176
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Table 5: Comparison of performance for Q(τ | x) in the simulation model with n = 500 and
approximate 40% censoring (Configuration 2). Knots at (a) the 33th and 66th quantiles,
(b) the quartiles and (c) the 20th, 40th, 60th and 80th quantiles of x2 were used for the
spline terms.

τ = 0.50 τ = 0.75
RMSE Bias RMSE Bias

Linear term in x2

1.3968 0.3233 1.3275 −0.0271

Piecewise linear spline

(a) 0.4967 0.2426 0.4875 −0.1078
(b) 0.6699 0.3322 0.6281 −0.0182
(c) 0.4775 0.2711 0.4842 −0.0793

Quadratic spline

(a) 0.8891 0.4601 0.7975 0.1096
(b) 0.4731 0.2755 0.4721 −0.0750
(c) 0.5090 0.2804 0.4973 −0.0700

Cubic spline

(a) 0.4784 0.2682 0.4766 −0.0822
(b) 0.6032 0.3072 0.5558 −0.0432
(c) 0.4956 0.2680 0.4991 −0.0824
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Figure 1: Scatterplot of Configuration 1 used in the simulation experiment. Censored points
are shown as open circles, uncensored points as filled circles. The conditional median line
evaluated at the mean of x1 is also shown.
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Figure 2: Various model fits for the nonlinear term in the simulation experiment (Configu-
ration 1). Shown here are the actual median (solid line) and model-estimated conditional
median lines (dashed or dotted) evaluated at the mean of x1.
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Figure 3: Estimated linear coefficients β̂0(τ) and β̂1(τ) in model (7) with 95% bootstrap
pointwise confidence intervals plotted against τ for 0 < τ ≤ 0.75.
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Figure 4: Estimated median unemployment duration against age for German males. The
black line shows the median, grey lines show 95% pointwise confidence limits.

35 40 45 50

0
5

10
15

Age (years)

U
ne

m
pl

oy
m

en
t d

ur
at

io
n 

(m
on

th
s)

Married

20 25 30 35 40 45

0
5

10
15

Age (years)

U
ne

m
pl

oy
m

en
t d

ur
at

io
n 

(m
on

th
s)

Single

Figure 5: Estimated deciles of unemployment duration against age for German males. The
solid line shows the median, dashed lines show the other deciles from 1st to 6th.
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IRISS-C/I is a visiting researchers programme at CEPS/INSTEAD, a socio-economic policy and research centre
based in Luxembourg. It finances and organises short visits of researchers willing to undertake empirical research

in economics and other social sciences using the archive of micro-data available at the Centre.

What is offered?
In 1998, CEPS/INSTEAD has been identified by the European Commission as one of the few Large Scale Facilities
in the social sciences, and, since then, offers researchers (both junior and senior) the opportunity to spend time
carrying out their own research using the local research facilities. This programme is currently sponsored by the
European Community’s 6th Framework Programme. Grants cover travel expenses and on-site accommodation. The
expected duration of visits is in the range of 2 to 12 weeks.

Topics
The major resource offered to visitors is access to a series of internationally comparable longitudinal surveys on liv-
ing conditions at the household and individual level. The anonymised micro-data provide information on wages and
income, health, education, employment and professional activities, accommodation, social relations,... Comparable
micro-data are available for EU countries, Central European countries, as well as the USA. These data offer oppor-
tunities to carry out research in fields such as survey and panel data methodology, income distribution and welfare,
income and poverty dynamics, multi-dimensional indicators of poverty and deprivation, gender, ethnic and social
inequality, unemployment and labour supply behaviour, education and training, social protection and redistributive
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All individuals (doctoral students as well as experienced academics) conducting research in an institution within the
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For more detailed information and application form, please consult our website: http://www.ceps.lu/iriss or contact
us at

IRISS-C/I, CEPS/INSTEAD
BP 48, L-4501 Differdange, G.-D. Luxembourg
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